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The Risk Thermostat Revisited:

A Predictor/ Corrector mechanism for Homeostatic Risk Regulation
Abstract

John Adams’ Risk Thermostat model proposed that human behaviour regulates experienced
risk rather than minimising objective hazard, accounting for phenomena such as behavioural
adaptation and, under some conditions, risk compensation (Adams, 1995; Wilde, 1994). While
influential, the model remained largely metaphorical, offering little account of the mechanisms
by which risk is sensed, regulated, or stabilised. Here we propose an updated formulation
grounded in contemporary neuroscience and predictive processing. We argue that risk
regulation can be modelled as a homeostatic control process operating over precision-
weighted expectations of harm and reward, rather than as a direct response to hazard
maghnitude. Within this framework, anxiety functions as a low-threshold anticipatory signal
associated with uncertainty about future harm (Grupe & Nitschke, 2013), pain as a high-
threshold signal associated with realised or imminent bodily threat (Apkarian et al., 2009;
Wiech, 2016), and reward anticipation as a countervailing signal encoding positive prediction
error about the value of action policies (Schultz, 1997; Schultz, 2016). This reinterpretation does
not claim a single unified neural mechanism for “risk” but offers a control-theoretic lens
through which disparate findings in pain, anxiety, motivation, and safety behaviour can be
coherently related.

Key words - Risk thermostat; Predictive processing; Homeostatic control; Anxiety and pain;
Risk compensation; Safety behaviour

Introduction

Risk regulation is a central feature of human behaviour across domains including transport
safety, occupational health, sport, finance, and everyday decision-making. Classical safety
engineering approaches have often assumed that reducing objective hazard will proportionally
reduce risky behaviour. In contrast, Adams argued that individuals tend to regulate their
behaviour to maintain a preferred level of perceived risk, a principle illustrated by the Risk
Thermostat metaphor (Adams, 1995).

The Risk Thermostat has proven useful in explaining behavioural adaptation to safety measures
and the sometimes disappointing impact of technical interventions. However, it was
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intentionally underspecified at the mechanistic level. Risk was treated as subjective and
learned, but the processes by which it is sensed, compared, and regulated were left open.

Over the past two decades, neuroscience has increasingly framed perception, action, and
affect as forms of active inference under uncertainty rather than stimulus-response mappings
(Friston, 2010; Clark, 2013). Pain, anxiety, and reward are now widely understood as context-
sensitive states shaped by expectations, learning, and control demands rather than as direct
readouts of sensory input (Barrett, 2017). This shift creates an opportunity to revisit the Risk
Thermostat as a biologically plausible control model, without claiming that the brain literally
computes “risk” as a single variable.

Risk as a Regulated Variable

In physiological homeostasis, regulated variables are maintained within tolerable bounds
rather than eliminated entirely. Temperature, glucose concentration, and blood pressure
fluctuate, but are constrained by feedback control. Adams’ central claim—that humans
regulate felt risk rather than objective hazard—implicitly places risk in this category.

From a neurocomputational perspective, experienced risk can be modelled as an emergent
quantity reflecting expectations about harm under uncertainty, weighted by confidence
(precision) in those expectations (Friston et al., 2016). Importantly, this does not imply that risk
is identical to prediction error. Rather, prediction error provides one class of signals that inform
whether current or anticipated states violate tolerable bounds of safety or value.

The Risk Thermostat as a Neurocomputational Control Loop
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Figure 1-The risk thermostat revisited
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This framing preserves Adams’ behavioural insight while avoiding the category error of equating
a sociotechnical construct (“risk”) with a single neural signal.

The Aversive Control Arm: Anxiety and Pain

Within this control-theoretic framing, anxiety and pain can be treated as distinct but related
aversive signals contributing to risk regulation.

Anxiety is best characterised as a future-oriented state associated with uncertainty and
anticipation of potential harm. Neurobiological accounts consistently emphasise its link to
uncertainty, volatility, and increased sensitivity to threat-related prediction error (Grupe &
Nitschke, 2013; Paulus & Stein, 2010). Anxiety often arises in the absence of current injury and
appears to bias behaviour toward caution and monitoring rather than immediate withdrawal.

Pain, by contrast, is typically present-oriented and closely tied to bodily integrity. Contemporary
accounts emphasise that pain perception is not a direct measure of tissue damage, but is
strongly modulated by expectations, context, and meaning (Apkarian et al., 2009; Wiech, 2016).
Nevertheless, pain tends to function as a higher-threshold signal, demanding immediate
protective or corrective action.

Treating anxiety and pain as two operating regimes of aversive control—rather than as
categorically separate systems—provides a parsimonious explanation for their frequent
interaction, including the amplification of pain by anxiety and the persistence of aversive states
after tissue healing.

The Appetitive Control Arm: Anticipation of Reward

Risk regulation cannot be understood solely in terms of avoidance. Organisms routinely accept
danger, effort, and discomfort in pursuit of valued outcomes. This requires a countervailing
signal that justifies exposure to risk.

Dopaminergic systems are widely interpreted as signalling reward prediction erro—outcomes
that are better or worse than expected—rather than pleasure itself (Schultz, 1997; Schultz,
2016). In control-theoretic terms, such signals increase the expected value of certain action
policies, thereby permitting risk-taking when anticipated benefits outweigh anticipated costs.

Within the Risk Thermostat framework, reward anticipation raises tolerance for uncertainty and
potential harm, not by suppressing aversive signals, but by re-weighting their influence on
action selection. This helps explain why identical hazards may be experienced as unacceptable
in some contexts and actively sought in others.

Arbitration, Setpoints, and Learning

For a thermostat to function, competing signals must be compared relative to a reference level.
In neural terms, this corresponds to integrative processes that combine expected reward,
expected harm, and effort costs when selecting actions. Models such as the Expected Value of
Control framework identify candidate mechanisms for such arbitration without claiming a
single dedicated “risk module” (Shenhav et al., 2013).

Risk tolerance is not fixed. It is shaped by development, learning, social norms, prior outcomes,
and health status (Adams, 1995; Slovic, 2016). Safe experiences can raise tolerance, while
unexpected harm can lower it. This slow adaptation mirrors the adjustment of setpoints seenin
other homeostatic systems.
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Risk Compensation: Conditional, Not Universal

A frequent criticism of risk thermostat models is that empirical evidence for risk compensation
is mixed. This criticism is well-founded. Early claims of near-complete behavioural offset (e.g.,
Peltzman, 1975) have not been uniformly supported, and later analyses emphasise that
compensation depends on conditions such as visibility of safety measures, feedback salience,
incentives, and skill (Hedlund, 2000).

The present framework accommodates this variability. If risk regulation depends on
experienced uncertainty and control rather than hazard per se, then compensation should
occur only when interventions alter subjective risk in a way that invites behavioural adjustment.
Where interventions reduce harm without changing experience, compensation may be weak or
absent.

Limitations and Competing Accounts

This account is explicitly a model, not a claim of neural identity. It does not deny the relevance
of alternative frameworks such as reinforcement learning, prospect theory, or the somatic
marker hypothesis. Rather, it offers a control-theoretic perspective that can coexist with these
approaches.

Key limitations include the difficulty of operationalising “experienced risk” in experimental
settings and the risk of over-generalising from laboratory paradigms to real-world
sociotechnical systems. Empirical tests of the model would require manipulations that
independently vary objective hazard, perceived controllability, and reward structure while
measuring behavioural and physiological responses.

Conclusion

John Adams’ Risk Thermostat captured a durable behavioural insight: humans regulate risk as it
is experienced, not as it is statistically defined. Contemporary neuroscience does not replace
this insight but helps to situate it within a broader understanding of biological control.

By treating anxiety, pain, and reward anticipation as interacting control signals rather than
isolated phenomena, the Risk Thermostat can be reframed as a homeostatic regulation of
action under uncertainty. This reframing does not claim finality or universality but provides a
coherent bridge between safety science and modern neurocognitive theory.

David Slater
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